Mathematical Theory of Rotating Gaseous Stars

Tetu Makino (Prof Emer at Yamaguchi Univ.)

November 29, 2017 //
The 27th Workshop on General Relativity and Gravitation in Japan
Financially supported by

the Yamaguchi University Foundation, Research Grant A1-2 (2017)
Einstein-Euler equations

\[R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}, \quad (1) \]

\[T^{\mu\nu} = (c^2 \rho + P) U^\mu U^\nu - Pg^{\mu\nu} \quad (2) \]

for the metric \(ds^2 = g_{\mu\nu} dx^\mu dx^\nu \)
Assumption (A):

P is a given function of $\rho > 0$ such that $0 < P, 0 < dP/d\rho < c^2$ for $\rho > 0$;

there exists a smooth function Λ which is analytic near 0, $\Lambda(0) = 0$, and

\[P = A\rho^{\gamma}(1 + \Lambda(A\rho^{\gamma^{-1}}/c^2)) \] \hspace{1cm} (3)

Here A, γ are positive constants, and

\[\frac{6}{5} < \gamma < \frac{3}{2}. \]
Result of [1]: Newtonian problem governed by the Euler-Poisson equations: \(c = +\infty \) admits axially and equatorially symmetric slowly rotating solutions with the density distribution

\[
\rho_N(r, \zeta) = \left(\frac{\gamma - 1}{A\gamma} \right)^{\frac{1}{\gamma-1}} \max(u_N(r, \zeta), 0)^{\frac{1}{\gamma-1}}
\]

with compact support, where \(r = \sqrt{(x_1)^2 + (x_2)^2 + (x_3)^2} \), \(\zeta = x_3/r \) for \(x = (x_1, x_2, x_3) \in \mathbb{R}^3 \), and the velocity field

\[
\vec{v}_N = -\Omega x_2 \frac{\partial}{\partial x_1} + \Omega x_1 \frac{\partial}{\partial x_2}
\]

with sufficiently small constant angular velocity \(\Omega \).
Problem: Find a solution of the Einstein-Euler equations, which tends to the solution ρ_N, \vec{v}_N as $c \to \infty$ of the form:

$$ds^2 = e^{2F}(cdt + A\phi)^2 - e^{-2F}[e^{2K}(d\varpi^2 + dz^2) + \Pi^2 d\phi^2]$$ \hspace{1cm} (4)

Here $x_1 = \varpi \cos \phi, x_2 = \varpi \sin \phi, x_3 = z$.
Main Result:

When u_O/c^2 is sufficiently small, we have a solution

$$F = \frac{1}{c^2} \left(\Phi_N - \frac{\Omega^2}{2} \varpi^2 \right) + O(1/c^4), \quad K = -\frac{\Omega^2}{2c^2} \varpi^2 + O(1/c^4),$$

$$A = -\varpi^2 \frac{\Omega}{c} (1 + O(1/c^2)), \quad \Pi = \varpi (1 + O(1/c^4)),$$

$$\rho = \left(\frac{\gamma - 1}{A\gamma} \right)^\frac{1}{\gamma - 1} \max(u, 0) \frac{1}{\gamma - 1} (1 + O(1/c^2)), \quad u = u_N + O(1/c^2) \quad (5)$$

Here Φ_N is the Newton potential generated by ρ_N, and $u_O = u_N(0, 0)$.

The equations to be solved reduce to

\[
\frac{\partial^2 F}{\partial \varpi^2} + \frac{\partial^2 F}{\partial z^2} + \frac{1}{\Pi} \left(\frac{\partial F}{\partial \varpi} \frac{\partial \Pi}{\partial \varpi} + \frac{\partial F}{\partial z} \frac{\partial \Pi}{\partial z} \right) + \frac{e^{4F}}{2\Pi^2} \left[\left(\frac{\partial A}{\partial \varpi} \right)^2 + \left(\frac{\partial A}{\partial z} \right)^2 \right] \\
= \frac{4\pi G}{c^4} e^{-2F+2K}(\epsilon + 3P), \tag{6a}
\]

\[
\frac{\partial}{\partial \varpi} \left(\frac{e^{4F}}{\Pi} \frac{\partial A}{\partial \varpi} \right) + \frac{\partial}{\partial z} \left(\frac{e^{4F}}{\Pi} \frac{\partial A}{\partial z} \right) = 0, \tag{6b}
\]

\[
\frac{\partial^2 \Pi}{\partial \varpi^2} + \frac{\partial^2 \Pi}{\partial z^2} = \frac{16\pi G}{c^4} e^{-2F+2K} \Pi, \tag{6c}
\]

\[
\frac{\partial \Pi}{\partial \varpi} \frac{\partial K}{\partial \varpi} - \frac{\partial \Pi}{\partial z} \frac{\partial K}{\partial z} = \frac{1}{2} \left(\frac{\partial^2 \Pi}{\partial \varpi^2} - \frac{\partial^2 \Pi}{\partial z^2} \right) + \Pi \left[\left(\frac{\partial F}{\partial \varpi} \right)^2 - \left(\frac{\partial F}{\partial z} \right)^2 \right] + \frac{e^{4F}}{4\Pi} \left[\left(\frac{\partial A}{\partial \varpi} \right)^2 - \left(\frac{\partial A}{\partial z} \right)^2 \right], \tag{6d}
\]

\[
\frac{\partial \Pi}{\partial z} \frac{\partial K}{\partial \varpi} + \frac{\partial \Pi}{\partial \varpi} \frac{\partial K}{\partial z} = \frac{\partial^2 \Pi}{\partial \varpi \partial z} + 2\Pi \frac{\partial F}{\partial \varpi} \frac{\partial F}{\partial z} - \frac{e^{4F}}{2\Pi} \frac{\partial A}{\partial \varpi} \frac{\partial A}{\partial z}, \tag{6e}
\]

\[
F = -\frac{u}{c^2} + \text{Const..} \tag{6f}
\]
(6a),(6b),(6c) are elliptic equations on F, A, Π when K is given, and (6d),(6e) are a first order system on K when F, A, Π are given.

[Point 1]: When $P = 0$, the integrability condition of (6d)(6e) is guaranteed a priori, but when $P \neq 0$, it is not the case and a device is needed.

Anyway we apply the fixed point theorem for contraction mappings by setting appropriate functional spaces.

[Point 2]: Through this process, we need the crucial lemma of [1] in order to prove the solvability of the elliptic equation on F.
[Point 1]:

\[
(6d),(6e) \quad \Leftrightarrow \quad \frac{\partial K}{\partial \varpi} = \tilde{K}_1, \quad \frac{\partial K}{\partial z} = \tilde{K}_3,
\]

where

\[
\tilde{K}_1 = \left[\left(\frac{\partial \Pi}{\partial \varpi} \right)^2 + \left(\frac{\partial \Pi}{\partial z} \right)^2 \right]^{-1} \left(\frac{\partial \Pi}{\partial \varpi} \cdot \text{RH}(6d) + \frac{\partial \Pi}{\partial z} \cdot \text{RH}(6e) \right), \quad (7a)
\]

\[
\tilde{K}_3 = \left[\left(\frac{\partial \Pi}{\partial \varpi} \right)^2 + \left(\frac{\partial \Pi}{\partial z} \right)^2 \right]^{-1} \left(-\frac{\partial \Pi}{\partial z} \cdot \text{RH}(6d) + \frac{\partial \Pi}{\partial \varpi} \cdot \text{RH}(6e) \right). \quad (7b)
\]

But

\[
\frac{\partial \tilde{K}_1}{\partial z} - \frac{\partial \tilde{K}_3}{\partial \varpi} = \frac{8\pi G}{c^4} e^{-2F+2K} P_{\Pi} \left[\left(\frac{\partial \Pi}{\partial \varpi} \right)^2 + \left(\frac{\partial \Pi}{\partial z} \right)^2 \right]^{-1} \times
\]

\[
\times \left[\left(\frac{\partial K}{\partial \varpi} - \tilde{K}_1 \right) \frac{\partial \Pi}{\partial z} - \left(\frac{\partial K}{\partial z} - \tilde{K}_3 \right) \frac{\partial \Pi}{\partial \varpi} \right]. \quad (8)
\]
Lemma 1: Even if $P \neq 0$, we have

$$\tilde{K} = K \quad \Rightarrow \quad \frac{\partial K}{\partial \varpi} = \tilde{K}_1, \quad \frac{\partial K}{\partial z} = \tilde{K}_3 \quad \Rightarrow \quad (6d), (6e),$$

where

$$\tilde{K}(\varpi, z) := \int_0^z \tilde{K}_3(0, z') dz' + \int_0^\varpi \tilde{K}_1(\varpi', z) d\varpi' \quad (9)$$
[Point 2]

Post-Newtonian approximation:

\[F = \frac{1}{c^2} \left(\Phi_N - \frac{\Omega^2}{2} \right) - \frac{w}{c^4}, \] (10a)

\[A = \left(-\frac{\Omega}{c} + \frac{Y}{c^3} \right) \varpi^2, \] (10b)

\[\Pi = \varpi \left(1 + \frac{X}{c^4} \right), \] (10c)

\[K = -\frac{\Omega^2}{2c^2} \varpi^2 + \frac{V}{c^4} \] (10d)

\[u = u_N + \frac{w}{c^2} \] (10e)

\[\Rightarrow \quad \rho = \left(\frac{\gamma - 1}{A\gamma} \right)^{\frac{1}{\gamma - 1}} \max(u, 0)^{\frac{1}{\gamma - 1}} (1 + [u/c^2]_1) \]
\[
\left[\frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} + \frac{\partial^2}{\partial z^2} + \frac{1}{(\gamma - 1) a^2} \max \left(\frac{u_N}{u_O}, 0 \right)^{\frac{1}{\gamma - 1} - 1} \right] w = \\
= 8 \left(\Phi_N - \frac{\Omega^2}{2} \omega^2 \right) \Omega^2 - 2 \Omega \left(2Y + \omega \frac{\partial Y}{\partial \omega} \right) + \\
- 4\pi G \left(-2\Phi_N \rho_N + \left(\frac{\gamma}{\gamma - 1} \Lambda_1 + 3 \right) P_N \right) + R_a, \quad (11a) \\
\left[\frac{\partial^2}{\partial \omega^2} + \frac{3}{\omega} \frac{\partial}{\partial \omega} + \frac{\partial^2}{\partial z^2} \right] Y = \frac{8}{\omega} \frac{\partial}{\partial \omega} \left[\Phi_N - \frac{\Omega^2}{2} \omega^2 \right] \Omega + R_b, \quad (11b) \\
\left[\frac{\partial^2}{\partial \omega^2} + \frac{2}{\omega} \frac{\partial}{\partial \omega} + \frac{\partial^2}{\partial z^2} \right] X = 16\pi G P_N + R_c, \quad (11c)
\]
Lemma 2: Given axially and equatorially symmetric, compactly supported function \(g \), the integral equation

\[
Q = \mathcal{K}\left[\frac{1}{(\gamma - 1)} \max \left(\frac{u_N}{u_O}, 0 \right)^{\frac{1}{\gamma - 1}} Q + g \right]
\]

admits a unique axially and equatorially symmetric solution \(Q \). Here

\[
\mathcal{K} f(x) = \frac{1}{4\pi} \int \frac{f(x')}{|x - x'|} dx' - \frac{1}{4\pi} \int \frac{f(x')}{|x'|} dx'.
\]

Note that then

\[
\left[\frac{\partial^2}{\partial \varpi^2} + \frac{1}{\varpi} \frac{\partial}{\partial \varpi} + \frac{\partial^2}{\partial z^2} + \frac{1}{(\gamma - 1)} \max \left(\frac{u_N}{u_O}, 0 \right)^{\frac{1}{\gamma - 1}} \right] Q + g = 0,
\]

\(Q(0, 0) = 0 \)
Open problem:

The solution is constructed on a bounded domain which contains the support of ρ. The matching problem to the exterior vacuum metric which is defined on the whole space and asymptotically flat at the space infinity.

The preprint is available at arXiv [2].

参考文献

THANK YOU
FOR YOUR ATTENTION!

Please visit my Homepage:

“Arkivo de Tetu Makino”
(http://hc3.seikyou.ne.jp/home/Tetu.Makino)