形式論理学の骸骨
第1部：命題論理

Tetu Makino
October 19, 2014

1 直観主義の命題論理

1.1 体系

直観主義の命題論理を次のように形式化してみよう。

- 空でない集合 L が与えられている。その要素は命題とよばれる。
- $L \times L$ から L への写像 \land, \lor, \rightarrow および L から L への写像 \neg が定義されている。
- L 上の二項関係 \Rightarrow が定義されている。
- 次の公理 A_0, \cdots, A_8 が要請される（ただし，A, B, C は任意の命題を表す）:

 A_0 $A \Rightarrow A$ である。また，$A \Rightarrow B$ かつ $B \Rightarrow C$ ならば，$A \Rightarrow C$ である；

 A_1 $A \land B \Rightarrow A, A \land B \Rightarrow B$;

 A_2 $C \Rightarrow A, C \Rightarrow B$ ならば $C \Rightarrow A \land B$;

 A_3 $A \Rightarrow A \lor B, B \Rightarrow A \lor B$;

 A_4 $A \Rightarrow C, B \Rightarrow C$ ならば $A \lor B \Rightarrow C$;

 A_5 $A \land (A \rightarrow B) \Rightarrow B$;

 A_6 $(A \land C) \Rightarrow B$ ならば $C \Rightarrow (A \rightarrow B)$;

 A_7 $(A \lor B) \land (\neg A) \Rightarrow B$;

 A_8 $A \land C \Rightarrow B \land (\neg B)$ ならば $C \Rightarrow (\neg A)$。

以下，$A \Rightarrow B$ と $B \Rightarrow A$ とのどちらもなりたつとき，$A \Leftrightarrow B$ と略記する。
1.2 分配法則

(1) \[A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C) \]

(2) \[A \lor (B \land C) \Rightarrow (A \lor B) \land (A \lor C) \]

(1) を証明する。まず A3 によって \(A \land B \Rightarrow (A \land B) \lor (A \land C) \) である。これに A6 を適用して, \(B \Rightarrow A \Rightarrow ((A \land B) \lor (A \land C)) \) である。同様に, \(C \Rightarrow A \Rightarrow ((A \land B) \lor (A \land C)) \) である。\(C \) で B を適用して, \((A \land B) \lor (A \land C) \) である。また, A1 によると, \(A \land (B \lor C) \Rightarrow B \lor C \) であるから, \[A \land (B \lor C) \Rightarrow A \Rightarrow ((A \land B) \lor (A \land C)) \]
である。一方, A1 により \(A \land (B \lor C) \Rightarrow A \) であるから, \[A \land (B \lor C) \Rightarrow A \land (A \Rightarrow ((A \land B) \lor (A \land C))) \]
である。A5 により右辺 \((A \land B) \lor (A \land C) \) であり, (1) を得る。QED

1.3

A, C が任意の命題のとき, \(C \Rightarrow (A \to A) \) である。

証明: A1 から \(A \land C \Rightarrow A \) である。ゆえに A6 から \(C \Rightarrow (A \to A) \) である。QED

1.4 \(\gamma \)

このように, 任意の命題 C にたいして \(C \Rightarrow B \) となる命題 B のひとつを \(\gamma \) と記し, これを \(B \Leftrightarrow \gamma \) と記す。上の定理により, 任意の命題 A にたいして, \((A \to A) \Leftrightarrow \gamma \) である。

1.5

\((A \to B) \Leftrightarrow \gamma \) は \(A \Rightarrow B \) であるために必要充分である。

証明: \((A \to B) \Leftrightarrow \gamma \) とする。このとき, \(A \Rightarrow (A \to B) \) だから, \(A \Rightarrow A \land (A \to B) \) であり, A5 から \(A \Rightarrow B \) となる。逆に, \(A \Rightarrow B \) であるならば, 任意の \(C \) にたいして A1 より \((A \land C) \Rightarrow A \) であるので, \((A \land C) \Rightarrow B \) である。すると, A6 より \(C \Rightarrow (A \to B) \) が出る。QED
省略記号
\[A \leftrightarrow B := (A \to B) \land (B \to A) \]
を導入すると、\((A \leftrightarrow B) \iff \gamma\) は \(A \leftrightarrow B\) のための必要充分条件である。

1.6

\(A \iff \gamma, \ B \iff \gamma\) は \((A \land B) \iff \gamma\) であるために必要充分である。

証明: \((A \land B) \iff \gamma\) とする。すなわち、任意の命題 \(C\) について \(C \Rightarrow (A \land B)\) であるとする。\(A1\) より \(A \land B \Rightarrow A, A \land B \Rightarrow B\) だから、\(C \Rightarrow A, C \Rightarrow B\) のどちらもなりたつ。ゆえに \(A \iff \gamma\) かつ \(B \iff \gamma\) である。逆に、\(A \iff \gamma, B \iff \gamma\) すると、任意の命題 \(C\) について \(C \Rightarrow A, C \Rightarrow B\) であり、\(A2\) から \(C \Rightarrow (A \land B)\) である。ゆえに \((A \land B) \iff \gamma\)。QED

1.7

ところが、ここまででの議論では、\(A \iff \gamma\) または \(B \iff \gamma\) であることは、\((A \lor B) \iff \gamma\) であることの必要充分条件であるとはいえない。また、\(C \Rightarrow (A \lor B)\) から \(C \Rightarrow A\) あるいは \(C \Rightarrow B\) のどちらかはなりたつといえるかどうか、わからないからである。

1.8

\(A, C\) が任意の命題のとき、\(A \land (\neg A) \Rightarrow C\) である。

証明: \(A3\) より \(A \land (\neg A) \Rightarrow (A \land (\neg A)) \lor (C \land (\neg A))\) である。配列法則により,

\[(A \lor (C \land \neg A)) \land ((\neg A) \lor (C \land \neg A))\]

が出るが、\(C \land (\neg A)\) だから \(A1\)、\(A4\) より \(A \lor (C \land (\neg A)) \Rightarrow A \lor C\) である。一方、\(A1\) より \(C \land (\neg A) \Rightarrow \neg A\) であるから、\(A4\) を二重用いると,

\[(\neg A) \lor (C \land \neg A) \Rightarrow \neg A \lor (\neg A) \Rightarrow \neg A\]

である。ゆえに、\(A2\) より \((A \lor C) \land (\neg A)\) が出る。ゆえに \(A7\) より \(C\) が出る。QED

1.9

\(\kappa\)

このように、任意の命題 \(C\) について \(B \Rightarrow C\) となる命題 \(B\) のひとつを \(\kappa\) と記して、このことを \(B \iff \kappa\) と記す。上の定理から、\(A \land (\neg A) \iff \kappa\) である。
1.10

$A \iff \gamma$ ならば $\neg A \iff \lambda$ である。

証明：$A \iff \gamma$ とする。C が任意の命題とすると、$C \implies A$ である。とくに、$\neg A \implies A$ である。$\neg A \implies \neg A$ と合わせると、A_2 より $\neg A \implies (A \land \neg A)$ となる。任意の C にたいして $A \land \neg A \implies C$ であったから、$\neg A \implies C$ となる。すなわち、$\neg A \iff \lambda$ QED

1.11

次がなりたつ：

1. $A \implies \neg \neg A$
2. $A \lor (\neg A) \implies (\neg \neg A \rightarrow A)$
3. $A \implies B$ ならば $\neg B \implies \neg A$
4. $A \implies \neg B$ ならば $B \implies \neg A$
5. $\neg \neg A \equiv \neg A$
6. $\neg \neg (A \lor (\neg A)) \equiv \gamma$
7. $\neg \neg (\neg \neg A \rightarrow A) \equiv \gamma$

(1) の証明：1.9 で見たように、$A \land C \implies \lambda$ ならば $A \implies \neg C$ である。C として $\neg A$ を適用すればよい。QED

(2) の証明：A_4 より

I $A \implies (\neg \neg A \rightarrow A)$

II $\neg A \implies (\neg \neg A \rightarrow A)$

の二つを示せばよい。$(\neg \neg A) \land A \implies A$ より、A_6 から I が出る。$(\neg \neg A) \land (\neg A) \equiv \lambda$ より $(\neg \neg A) \land (\neg A) \implies A$ であるから、A_6 より II が出る。QED

1.12

直観主義の命題論理においては、

排中律： $A \lor (\neg A) \equiv \gamma$

も

二重否定律： $\neg \neg A \implies A$

も一般には成り立たない。このことを次の例で示そう。
\(L = \{0, 1/2, 1\}\) とする。

\[
p \lor q := \max\{p, q\},
p \land q := \min\{p, q\},
(p \rightarrow q) := \max\{x \mid p \land x \leq q\},
\neg p := (p \rightarrow 0)
(p \Rightarrow q) := (p \leq q)
\]

と定義する。すると、

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p \rightarrow q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

となり、公理をみたす体系だが、反例となる。

2 古典論理

2.1 古典論理の定義

直観主義の命題論理に公理として

\[A9 \quad A \lor (\neg A) \leftrightarrow \gamma\quad \text{（排中律）}\]

をつければわたったものを古典論理の命題論理と考える。むろん、A9 は略記号を用いずになければ、任意の命題 \(A, C\) にたいして

\[C \Rightarrow A \lor (\neg A)\]

が成り立つということである。以下、この章ではこの古典論理において考える。
2.2 二重否定

\[\neg\neg A \iff A \]

証明：1.11 (1) で見たように，\(A \Rightarrow \neg\neg A \)は直観論理でもなりたつ。また，
1.11 (2) で見たように，\(A \lor (\neg A) \Rightarrow (\neg\neg A \Rightarrow A) \)は直観論理でもなりたつ。
いま \(A9 \) があると，\((\neg A) \Rightarrow (\neg\neg A \rightarrow A) \)となり，\((\neg\neg A \rightarrow A) \) \(\Rightarrow \neg A \)
だから，\((\neg\neg A \rightarrow A) \) \(\iff \neg A \)となり，1.4 により \(\neg\neg A \Rightarrow A \)である。QED

2.3 含意の還元

\[(A \rightarrow B) \iff (\neg A) \lor B \]

証明：まず

(1) \[A \land ((\neg A) \lor B) \Rightarrow B \]
を示そう。じっさい，分配法則により，
\[A \land ((\neg A) \lor B) \Rightarrow (A \land (\neg A)) \lor (A \land B) \Rightarrow A \land B \Rightarrow B \]
である。ここで，\(A9 \) より \((A \land (\neg A)) \Rightarrow A \land B \) であることを用い，\(A4 \) を使っ
た。次に，

(2) \[A \land C \Rightarrow B \] ならば \(C \Rightarrow (\neg A) \lor B \)
を示そう。\(A \land C \Rightarrow B \) と仮定すると，

\[(\neg A) \lor (A \land C) \Rightarrow (\neg A) \lor B \]
であるが，分配法則により，
\[((\neg A) \lor A) \land ((\neg A) \lor C) \Rightarrow \neg A \land C \]
であり，\(A9 \) より

\[C \Rightarrow (\neg A) \lor C \Rightarrow \neg A \lor C \]
である。したがって，\(C \Rightarrow (\neg A) \lor B \) が出る。次に，(2) の \(C \) として \(A \rightarrow B \)
を適用すると，

\[A \land (A \rightarrow B) \Rightarrow B \] ならば \((A \rightarrow B) \Rightarrow (\neg A) \lor B \)
となる。\(A5 \) によると，\(A \land (A \rightarrow B) \Rightarrow B \) であるので，\(A \rightarrow B \Rightarrow (\neg A) \lor B \)
である。\(A6 \) によると，

\[(A \land C) \Rightarrow B \] ならば \(A \Rightarrow (A \rightarrow B) \)
であるが，\(C \) として \((\neg A) \lor B \) を適用すると，\(A \land ((\neg A) \lor B) \Rightarrow B \) は (1) で
示した。ゆえに \((\neg A) \lor B \Rightarrow (A \rightarrow B) \) である。ゆえに \((\neg A) \lor B \iff (A \rightarrow B) \)
となる。QED
3 命題計算

この章では、Gentzen にしたがって、直観主義の論理計算 LJ(logischer intuitionistischen Kalkül) と古典論理の計算 LK(logischer klassischen Kalkül) を構築する。

3.1 論理式

LJ と LK における記号、論理式は以下のとおりである。

- 記号は、命題定数 \(\land, \lor \)、命題変数 \(p_0, p_1, \cdots \)、論理記号 \(\land, \lor, \rightarrow, \neg \) および補助記号の括弧 () である。

- 論理式とは次のように帰納的に定義されるもののみである：命題定数、命題変数は論理式であり、\(A, B \) が論理式ならば、\((A \land B), (A \lor B), (A \rightarrow B), \neg(A) \) は論理式である。

以下、この論理式の全体のなす集合を \(L \) とする。\(L \) に二項関係 \(\Rightarrow \) を定義することを、一つの命題計算 propositional calculus を与えるという。

3.2 LJ の構築

- LJ の公理は

\[
D \Rightarrow D, D \Rightarrow \gamma, \land \Rightarrow D
\]

である。ここに \(D \) は任意の論理式を表す。

- LJ の推論法は以下のとおりである。ここに \(A, B, C, D, E \) は任意の論理式、\(\Gamma, \Delta \) は論理式の有限列を表す。\(\Gamma, \Delta \) は空でもよい。\(\Rightarrow \) の左に空のみがあるときは、\(\gamma \Rightarrow \) と解釈する。図は横線の上の図から下の図が導けることとを表す。

構造にかんする推論法：

\[
\begin{align*}
\Gamma \Rightarrow C & \quad \Gamma \Rightarrow \land \quad (D, D, \Gamma) \Rightarrow C \\
(D, \Gamma) \Rightarrow C & \quad \Gamma \Rightarrow C \quad (D, \Gamma) \Rightarrow C \\
(\Delta, D, E, \Gamma) \Rightarrow C & \quad \Gamma \Rightarrow D \quad (D, \Delta) \Rightarrow C \\
(\Delta, E, D, \Gamma) \Rightarrow C & \quad (\Gamma, \Delta) \Rightarrow C
\end{align*}
\]

（最後のものは cut(独 Schnitt) とよばれる。）

論理記号にかんする推論法：

\begin{align*}
\land \text{とり} & \quad (A, \Gamma) \Rightarrow C \quad (B, \Gamma) \Rightarrow C \\
& \quad (A \land B, \Gamma) \Rightarrow C \\
\land \text{いれ} & \quad \Gamma \Rightarrow A \land \Gamma \Rightarrow B \\
& \quad \Gamma \Rightarrow A \land B \\
\lor \text{とり} & \quad (A, \Gamma) \Rightarrow C \quad (B, \Gamma) \Rightarrow C \\
& \quad (A \lor B, \Gamma) \Rightarrow C \\
\lor \text{いれ} & \quad \Gamma \Rightarrow A \lor A \Rightarrow B \\
& \quad \Gamma \Rightarrow A \lor B \\
\neg \text{とり} & \quad (\neg A, \Gamma) \Rightarrow \land \\
& \quad \neg \Gamma \Rightarrow \neg A \\
\rightarrow \text{とり} & \quad \Gamma \Rightarrow A \land (B, \Delta) \Rightarrow C \\
& \quad \rightarrow \Gamma \Rightarrow (A, \Gamma) \Rightarrow B \\
& \quad \rightarrow \Gamma \Rightarrow (A \rightarrow B)
\end{align*}

それで，\(\Gamma \)が論理式の有限列であり，\(C \)が論理式のとき，\(\Gamma \Rightarrow C \)という図をsequent(独Sequenz)によぶが，あるsequentが証明可能であるということを次のように定義する：公理は証明可能である；証明可能なsequentsから推論規則によって導けるsequentは証明可能である；以上で証明可能とわかるsequentのみが証明可能であるとする。

そこで，論理式\(A, B \)について\(A \Rightarrow B \)がsequentとして証明可能のとき，この関係\(\Rightarrow \)が成り立っていると定義して，\(\text{LJ} \)が構築される。以下，これについて，第1章の公理を証明しよう。そのためにふたつのことを準備する。

3.3

\(A, B, C \)が論理式であり，\(\Gamma \)が論理式の有限列のとき（空でもよい），\((A, B, \Gamma) \Rightarrow C \)は\((A \land B, \Gamma) \Rightarrow C \)であるための必要かつ十分条件である。

証明：\((A \land B, \Gamma) \Rightarrow C \)とする。\(\land \)いれから\((A, B) \Rightarrow A \land B \)であるので，これと仮定からcutすると，\((A, B, \Gamma) \Rightarrow C \)が出る。逆に，\((A, B, \Gamma) \Rightarrow C \)とすると，\(\land \)とりから\(A \land B \Rightarrow A \)であるので，これと仮定からcutすると，\((A \land B, B, \Gamma) \Rightarrow C \)となり，\(\land \)とりから\(A \land B \Rightarrow B \)なので，これといまのことをcutすると，\((A \land B, A \land B, \Gamma) \Rightarrow C \)となるので，構造規則で重複を除去して\((A \land B, \Gamma) \Rightarrow C \)である。QED

3.4 分配法則

\((A \lor B) \land C \Rightarrow (A \land C) \lor (B \land C) \)
証明：まず\(\land\)いれにより，
\[
(A, C) \Rightarrow A \land C, \quad (B, C) \Rightarrow B \land C
\]
であるから，\(\lor\)いれにより，
\[
(A, C) \Rightarrow (A \land C) \lor (B \land C), \quad (B, C) \Rightarrow (A \land C) \lor (B \land C)
\]
である。そこで，\(\lor\)とりにより，
\[
(A \lor B, C) \Rightarrow (A \land C) \lor (B \land C)
\]
となる。ゆえに3.3より
\[
(A \lor B) \land C \Rightarrow (A \land C) \lor (B \land C).
\]
QED

3.5

1.1 の公理を順に確かめていこう。

まず，\(A_{0}\)は二項関係 ⇒ の定義からすぐ出る。（公理および推論規則のうちcutである。）
A1 は ∧ とりからすぐ出る。
A2 は ∧ いれからすぐ出る。
A3 は ∨ いれからすぐ出る。
A4 は ∨ とりからすぐ出る。
A5 : \(A \land (A \to B) \Rightarrow B\) は次のように証明できる：\(A \to A\) と \(B \Rightarrow B\) より
→ とりで \((A \to B, A) \Rightarrow B\) である。それゆえ，3.3より \(A \land (A \to B) \Rightarrow B\)
である。
A6 : \((A \land C) \Rightarrow B\) ならば \(C \Rightarrow (A \to B)\) であることは，次のように証明できる：\((A \land C) \Rightarrow B\) ならば，3.3により \((A, C) \Rightarrow B\) である。ゆえに \(\lor\) いれにより \(C \Rightarrow (A \to B)\) が出てくる。
A7 : \((A \lor B) \land (\neg A) \Rightarrow B\) は次のように証明する：まず分配法則で
\[
(A \lor B) \land (\neg A) \Rightarrow (A \land (\neg A)) \lor (B \land (\neg A))
\]
である。\(A \Rightarrow A\) から \(\neg\) とりにより \((\neg A, A) \Rightarrow \bot\) であるから3.3より \(A \land (\neg A) \Rightarrow \bot\)
である。\(\bot \Rightarrow B \land (\neg A)\) であるから，\(\lor\)いれで \((A \land (\neg A)) \lor (B \land (\neg A)) \Rightarrow B \land (\neg A) \Rightarrow B\) よる。
A8 : \(A \land C \Rightarrow B \land (\neg B)\) ならば \(C \Rightarrow \neg A\) は，\(B \land (\neg B) \Rightarrow \bot\) と \(\neg\) いれからすぐ出る。

以上で，\(LJ\) はたしかに第1章の意味で直観主義の命題論理のひとつであるといえる。
3.6 LK の構築

命題計算 LK の公理は LJ のとと同じだが、推論規則が次のように拡張される。
ただし、\(\Gamma, \Delta, \Theta, \Lambda \) は論理式の有限列（空でもよい）を表し、\(A, B, D, E \) は論理式を表す。\(\Rightarrow \) 空は \(\Rightarrow \Lambda \)、空 \(\Rightarrow \) は \(\gamma \Rightarrow \) と解釈する。Sequent も \(\Rightarrow \) の右辺がいくつかの論理式の有限列（空でもよい）のばあいに拡張される。

構造にかんする推論規則：

\[
\begin{align*}
\Gamma \Rightarrow \Theta & \quad \Gamma \Rightarrow \Theta \\
(D, \Gamma) \Rightarrow \Theta & \quad \Gamma \Rightarrow \Theta, D \\
(D, D, \Gamma) \Rightarrow \Theta & \quad \Gamma \Rightarrow \Theta, D, D \\
(D, \Gamma) \Rightarrow \Theta & \quad \Gamma \Rightarrow \Theta, D \\
(\Delta, D, E, \Gamma) \Rightarrow \Theta & \quad \Gamma \Rightarrow \Theta, E, D, \Lambda \\
(\Delta, E, D, \Gamma) \Rightarrow \Theta & \quad \Gamma \Rightarrow \Theta, D, E, \Lambda \\
\Gamma \Rightarrow \Theta, D & \quad (D, \Delta) \Rightarrow \Lambda \\
(\Gamma, \Delta) \Rightarrow \Theta, \Lambda
\end{align*}
\]

（最後のものは \text{cut}（独 Schnitt）とよばれる。）

論理記号にかんする推論規則：

\[
\begin{align*}
\land \text{とり} & \quad (A, \Gamma) \Rightarrow \Theta \\
(A \land B, \Gamma) \Rightarrow \Theta & \quad (A \land B) \Rightarrow \Theta \\
(\forall \text{と} \Gamma) & \quad \Gamma \Rightarrow \Theta, A \land B \\
(A \land B) \Rightarrow \Theta & \quad (A \land B, \Gamma) \Rightarrow \Theta \\
\land \text{いれ} & \quad \Gamma \Rightarrow \Theta, A \\
\Gamma \Rightarrow \Theta, A \lor B & \quad \Gamma \Rightarrow \Theta, A \lor B \\
\land \text{とり} & \quad \Gamma \Rightarrow \Theta, A \\
(\neg A, \Gamma) \Rightarrow \Theta & \quad \neg \text{と} (A, \Gamma) \Rightarrow \Theta \\
\Gamma \Rightarrow \Theta, A & \quad \Gamma \Rightarrow \Theta, \neg A \\
\rightarrow \text{と} & \quad (A, \Gamma) \Rightarrow \Theta, \Lambda \\
(A \rightarrow B, \Gamma, \Delta) \Rightarrow \Theta, \Lambda & \quad \rightarrow \text{いれ} \\

\text{LJ} の推論規則は LK の推論規則の特別のばあいになっているから、LJ で証明可能ならば、LK で証明可能である。
3.7 排中律

LKにおいては，

A9 \(\gamma \Rightarrow A \lor \neg A \) （排中律）

が成り立つ。

証明：公理 \(A \Rightarrow A \) から\(\neg \neg \)いれにとって，\(\gamma \Rightarrow (A, \neg A) \) である。\(\lor \)いれに
よって，\(\gamma \Rightarrow (A, A \lor \neg A) \) であるから，構造規則によって \(\gamma \Rightarrow (A \lor \neg A), A \)
となり，\(\lor \)いれによって \(\gamma \Rightarrow (A \lor \neg A), A \lor \neg A \) となり，構造規則によっ
て \(\gamma \Rightarrow A \lor \neg A \) が出る。QED

4 形式的体系

4.1 形式的体系

いろいろな数学理論を研究するさい，内容と無関係に形式的な構造のみに着
目して研究するたびにたって，その数学理論を形式化した体系を形式的体
系とよぶ。もっとはっきりいうと，形式的体系 \(S \) は次のものからなる：

- 記号 symbol とよばれるものを要素とする可算集合；
- 表現 expression とよばれるものを要素とする可算集合（表現は記号の
 有限列である）；
- 公理 axiom とよばれるものを要素とする集合（公理は表現である）；
- 推論規則 rule of inference とよばれるものの有限集合（推論規則 \(R \) と
 は，次のような関係である：\(R \) には数 \(n \) が決まっていて，\(n + 1 \) 個の表現
 \(B_1, \ldots, B_n, A \) にたいしてそれらが関係 \(R \) をみたすかどうかを有限回の手続
 きで判定できる；もし関係 \(R \) がみたされるときは，\(\forall A \) は \(B_1, \ldots, B_n \) から \(R \)
 によって直接導かれる”という）。

4.2 証明と定理

\(S \) は形式的体系とし，\(\forall A \) は \(S \) の表現とする。\(S \) の表現の有限列 \(A_1, \ldots, A_n \) は，
次のことがなりたつとき，\(S \) における \(A \) の証明 proof であるという：

- \(i = 1, 2, \ldots, n \) にたいして \(A_i \) は \(S \) の公理であるか，または，\(A_1, \ldots, A_{i-1} \)
 からある推論規則によって直接導かれる；
- \(A_n \) は \(A \) である。

証明が存在する表現を定理 theorem とよぶ。
4.3 決定問題

S は形式的体系とする。S の任意の表現にたいして、それが定理であるかどうかを有限回の手続きで決定することができるとき、S は決定可能 decidable であるという。S が決定可能であるかどうかを判定したり、決定手続きを求めめる問題は決定問題 decision problem とよばれる。

4.4 仮定からの証明

S は形式的体系とし、Γ は S の表現からなるある集合、\mathfrak{A} は S の表現とする。S の表現の有限列 $\mathfrak{A}_1, \ldots, \mathfrak{A}_n$ は、次のことがなったとき、S における Γ からの \mathfrak{A} の証明とよび、Γ の要素をその仮定 hypothesis とよぶ。

- $i = 1, \ldots, n$ にたいして、\mathfrak{A}_i は S の公理であるか、Γ の要素であるか、または $\mathfrak{A}_1, \ldots, \mathfrak{A}_{i-1}$ からある推論規則で直接導かれる；
- \mathfrak{A}_n は \mathfrak{A} である。

S における Γ からの \mathfrak{A} の証明が存在するとき、\mathfrak{A} は Γ から導かれるといい、

$$\Gamma \vdash \mathfrak{A}$$

と記す。したがって、Γ が空集合のとき、Γ からの \mathfrak{A} の証明が存在するということは、\mathfrak{A} が定理であるということであり、このとき \mathfrak{A} は証明可能 provable であるといい、

$$\vdash \mathfrak{A}$$

と記すことがある。

4.5 無矛盾性

S は形式的体系とする。S の表現 \mathfrak{A} にたいしてその否定とよばれる表現 $\neg \mathfrak{A}$ が定義されているとする。このとき、\mathfrak{A} と $\neg \mathfrak{A}$ ともに証明可能であるような表現が存在するとき、S は非無矛盾 inconsistent であるといい、そのような表現が存在しないとき、S は無矛盾 consistent であるという。

5 （古典的な）命題論理

古典的な命題論理を形式的体系として表現する方法はいろいろあるが、この章では、H_p とよばれる体系をあつかう。
5.1 Hpの構築

Hilbertの命題計算とよばれる形式的体系Hpを次のように構築する。

- 記号は論理記号とよばれる→および→，命題変数とよばれる\(A_1, A_2, \ldots\)および補助記号として括弧(,)である；
- 表現は，論理式とよばれるものであり，次のようにして帰納的に定義されたもののみとする：命題変数は論理式であり，\(A\)と\(B\)が論理式のとき，\((-A)\)および\((A) \rightarrow (B)\)は論理式である；

- \(A, B, C\)が任意の論理式を表すとして，次ものが公理である：
 \[\begin{align*}
 A_1 & \quad A \rightarrow (B \rightarrow A) \\
 A_2 & \quad (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \\
 A_3 & \quad (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)
 \end{align*}\]

- 推論規則は仮言推理modus ponensとよばれる次のものただひとつである：\(A\)および\(A \rightarrow B\)から\(B\)が直接導かれる。

以下，本章では，この形式体系Hpについて考察する。

5.2 記号の追加

\(A, B\)は論理式とする。\((-\rightarrow\rightarrow)\)を\(A \land B\)と略記し，\((\neg A) \rightarrow B\)を\(A \lor B\)と略記し，\((A \rightarrow B) \land (B \rightarrow A)\)を\(A \leftrightarrow B\)と略記する。

5.3

\(A\)が任意の論理式のとき，

\[\vdash (A \rightarrow A)\]

がなりたつ。

証明：公理A2より

\(\begin{align*}
(1) & \quad (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)) \\
(2) & \quad A \rightarrow (A \rightarrow A) \rightarrow A
\end{align*}\)

である。（1）と（2）に仮言推理をもちいて，

\(\begin{align*}
(3) & \quad (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A) \\
(4) & \quad A \rightarrow (A \rightarrow A)
\end{align*}\)

である。しかし，公理A1より

\(\begin{align*}
(4) & \quad A \rightarrow (A \rightarrow A)
\end{align*}\)

であるから，（3）（4）に仮言推理をもちいて，\(A \rightarrow A\)を得る。

注意：

\[A \lor (\neg A)\]
は \((-\mathfrak{A}) \rightarrow (-\mathfrak{A})\) を略記したものであった。したがって、今のことから、これは任意の論理式 \(\mathfrak{A}\) にたいして定理である。これを排中律 law of the excluded middle; tertium non datur とよぶ。

5.4 演繹定理 deduction theorem

\(\Gamma\) はある論理式の集合、\(\mathfrak{A}, \mathfrak{B}\) は論理式とする。

\[\Gamma \cup \{ \mathfrak{A} \} \vdash \mathfrak{B} \]

ならば,

\[\Gamma \vdash (\mathfrak{A} \rightarrow \mathfrak{B}) \]

がなりたつ。とくに,

\[\mathfrak{A} \vdash \mathfrak{B} \]

ならば,

\[\vdash (\mathfrak{A} \rightarrow \mathfrak{B}) \]

である。

証明: \(\Gamma\) に \(\mathfrak{A}\) を要素として付け加えた集合を \(\Gamma'\) とし、\(\Gamma'\) から \(\mathfrak{B}\) を導く証明を \(\mathfrak{B}_1, \cdots, \mathfrak{B}_n\) とする。このとき, \(\mathfrak{A} \rightarrow \mathfrak{B}_i\) を \(\mathfrak{C}_i\) とおくと, \(\mathfrak{C}_1, \cdots, \mathfrak{C}_n\) は \(\Gamma\) から \(\mathfrak{A} \rightarrow \mathfrak{B}\) を導く証明となることを示そう。これを示すために, \(i = 1, \cdots, n\) にかんする帰納法で,

\[\Gamma \vdash (\mathfrak{A} \rightarrow \mathfrak{B}_i) \]

を示す。まず \(i = 1\) のときは, \(\mathfrak{B}_1\) は \(\Gamma\) に属するか, 公理であるか, \(\mathfrak{A}\) であるかのいずれかである。\(\mathfrak{B}_1\) が \(\Gamma\) に属するかまたは公理であるとき, \(\mathfrak{B}_1 \rightarrow (\mathfrak{A} \rightarrow \mathfrak{B}_1)\) は公理であるから, 仮言推理により

\[\Gamma \vdash (\mathfrak{A} \rightarrow \mathfrak{B}_1) \]

が出る。\(\mathfrak{B}_1\) が \(\mathfrak{A}\) であるときは，

\[\vdash (\mathfrak{A} \rightarrow \mathfrak{A}) \]

より

\[\vdash (\mathfrak{A} \rightarrow \mathfrak{B}_1) \]

がなりたっている。次に, \(i \geq 2\) とし, \(k \leq i - 1\) なるすべての \(k\) について

\[\Gamma \vdash (\mathfrak{A} \rightarrow \mathfrak{B}_k) \]

14
がなりたっているとする。このとき、次の4とおりのうちいずれかである：
(1) \(B_i \) は \(\Gamma \) に属する；(2) \(B_i \) は公理である；(3) \(B_i \) は \(\mathcal{A} \) である；(4) \(B_i \) は \(B_1, \ldots, B_{i−1} \) から仮言推理によって直接導かれる。（1）(2)(3)の
ばあいは、 \(i = 1 \) のときと同様にして

\[\Gamma \vdash (\mathcal{A} \rightarrow B_i) \]

を得る。（4）のばあいは、ある \(j < i, k < i \) にたいして、\(B_k \) は \(B_j \rightarrow B_i \) で
ある。ゆえに帰納法の仮定から \(\Gamma \vdash (\mathcal{A} \rightarrow B_j) \) と

\[\Gamma \vdash (\mathcal{A} \rightarrow (B_j \rightarrow B_i)) \]

がなりたっている。公理 A2 により

\[\vdash (\mathcal{A} \rightarrow (B_j \rightarrow B_i)) \rightarrow ((\mathcal{A} \rightarrow B_j) \rightarrow (\mathcal{A} \rightarrow B_i)) \]

であるから、これと

\[\Gamma \vdash \mathcal{A} \rightarrow (B_j \rightarrow B_i) \]

から

\[\Gamma \vdash (\mathcal{A} \rightarrow B_j) \rightarrow (\mathcal{A} \rightarrow B_i) \]

である。これと

\[\Gamma \vdash (\mathcal{A} \rightarrow B_j) \]

から

\[\Gamma \vdash (\mathcal{A} \rightarrow B_i) \]

が出る。QED

5.5

仮言推理と演繹定理をくみあわせて次が得られる：
(1) \(\{ \mathcal{A} \rightarrow \mathcal{B}, \mathcal{B} \rightarrow \mathcal{C} \} \vdash \mathcal{A} \rightarrow \mathcal{C} \)
(2) \(\{ \mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{C}), \mathcal{B} \} \vdash \mathcal{A} \rightarrow \mathcal{C} \)

以下は定理である：
(3) \(\neg \mathcal{A} \leftrightarrow \mathcal{A} \) （二重否定の法則 law of double negations）
(4) \(\neg \mathcal{A} \rightarrow (\mathcal{A} \rightarrow \mathcal{B}) \)
(5) \((\neg \mathcal{B} \rightarrow \neg \mathcal{A}) \leftrightarrow (\mathcal{A} \rightarrow \mathcal{B}) \)
(6) \(\mathcal{A} \rightarrow (\neg \mathcal{B} \rightarrow \neg (\mathcal{A} \rightarrow \mathcal{B})) \)
(7) \(\mathcal{A} \rightarrow \mathcal{B} \rightarrow (\neg \mathcal{A} \rightarrow (\neg \mathcal{B} \rightarrow \mathcal{B})) \)
（8）

\[(A \rightarrow B) \rightarrow A\]

（3）の証明：まず \(\neg A \rightarrow A\) を証明する。公理 A3 より

\[(-A \rightarrow \neg A) \rightarrow ((A \rightarrow \neg A) \rightarrow A)\]

であり、\(-A \rightarrow \neg A\) は証明したこと、（2）より \((-A \rightarrow \neg A) \rightarrow A\) である。
一方公理 A1 より \(\neg A \rightarrow (A \rightarrow \neg A)\) であるので、（1）より \(\neg A \rightarrow A\) が出る。
次に、\(A \rightarrow \neg A\) を証明する。公理 A3 より

\[((-A \rightarrow \neg A) \rightarrow (\neg A \rightarrow \neg A))\]

であるが、今日のことから \(\neg A \rightarrow \neg \neg A\) であるので、仮言推理により \(\neg A \rightarrow \neg \neg A\) をである。ところが公理 A1 より \(\neg A \rightarrow (\neg A \rightarrow A)\) であるから、
（1）により \(\neg A \rightarrow \neg \neg A\) が出る。QED

（4）の証明：\(-A\) と \(A\) を仮定すると、公理 A1 より

\[\neg A \rightarrow (-B \rightarrow \neg A)\]

\[A \rightarrow (-B \rightarrow A)\]

であるから、仮言推理により

\[-B \rightarrow \neg A, \quad B \rightarrow A\]

である。いっぽう、公理 A3 より

\[(-B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)\]

だから、仮言推理を2回用いて \(A\) が出る。すなわち、\{\neg A, \ A\} \vdash B\ である。ここで演繹定理を用いると \(\neg A \vdash (A \rightarrow B)\) と \(\neg A \vdash (A \rightarrow B)\) が順次出る。QED

（5）の証明：まず \((-B \rightarrow \neg A) \rightarrow (A \rightarrow B)\) を証明する。仮定 \(-B \rightarrow \neg A\) と公理 A3

\[(-B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)\]

と仮言推理で \((-B \rightarrow A) \rightarrow B\) が出、これと公理 A1 \(A \rightarrow (-B \rightarrow A)\) とから（1）より \(A \rightarrow B\) が出る。すなわち、\((-B \rightarrow \neg A) \vdash A \rightarrow B\) である。
ゆえに演繹定理より \((-B \rightarrow \neg A) \rightarrow (A \rightarrow B)\) は定理である。次に

\[(A \rightarrow B) \rightarrow (-B \rightarrow \neg A)\]
を証明する。仮定 \(A \to B \) と（3）\(\to A \to A \) から（1）により \(\to A \to B \)
であり、これと（3）\(B \to \to B \) とから（1）により \(\to A \to \to B \) である。
今示したことから

\[
(\to A \to \to B) \to (\to B \to \to A)
\]
であるから、仮言推理により \(\to B \to \to A \) である。すなわち，
(\(A \to B \) と（5）から仮言推理により \(\to B \to \to A \) であり，一方、仮定
\(A \to B \) と（5）\(\to A \to B \) とから仮言推理により \(\to B \to \to A \) から仮言推理
により \(\to B \to \to A \) である。しかし公理 A3 により

\[
(\to B \to \to A) \to ((\to B \to \to A) \to B)
\]
であるから、仮言推理により \(\to B \to \to A \to B \) である。\(\to B \to \to A \) だったから、仮言推理により \(B \) である。すなわち

\[
\{ A \to B, \to A \to B \} \vdash B
\]
である。したがって演繹定理を2回用いて求める定理を得る。QED

5.6 ex contradictione sequitur quodlibet

\[A \land (\to A) \to B \]

証明：定義により \(A \land (\to A) \) は \(\to (A \to \to A) \) の略記号である。したがって、
\(A \to \to A \) を \(C \) とするととき、\(\to C \to B \) が証明すべきことがある。ところ
で、5.5 (3) により、\(C \) は定理である。したがって、5.5 (3) より \(C \to \to C \) も
定理であるから、仮言推理で \(\to \to C \) も定理である。一方、5.5 (4) より

\[\to C \to (\to C \to B) \]

であるから、仮言推理で、\(\to C \to B \) も定理である。QED

5.7 意味論 semantics

命題論理においては、\(\neg \) は否定 negation，\(\to \) は含意 implication，\(\land \) は連言
conjunction，\(\lor \) は選言 disjunction という意味がある。これはどういうことか
というと、次のようなのである。命题変数の各々に真偽値 1 または 0 を付
与するとき，その与え方のひとつを付値 valuation とよぶ。付値が決まったとき，論理式にたいしても次の真偽表で帰納的に真偽値を付与する：

<table>
<thead>
<tr>
<th>A</th>
<th>\neg A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \rightarrow B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

いまある論理式 \(\mathfrak{A} \) について，命題変数にどのような付値を与えても \(\mathfrak{A} \) の値がつねに1であるとき，\(\mathfrak{A} \) はトートロジー tautology であるとか，恒真 valid であるとかいう。

5.8 健全性定理 soundness theorem

論理式 \(\mathfrak{A} \) が証明可能ならば，\(\mathfrak{A} \) は恒真である。

証明：まず公理は恒真であることは，真偽表で確かめることができる。また，仮言推理では，ふたつの恒真からは恒真が導かれる。すなわち，\(\mathfrak{A}, \mathfrak{A} \rightarrow \mathfrak{B} \) が恒真なら，\(\mathfrak{B} \) も恒真である。ならとなければ，もしこの付値で \(\mathfrak{B} \) の値が0となると，その付値について，\(\mathfrak{A}, \mathfrak{A} \rightarrow \mathfrak{B} \) の値がいずれも1であることとは，真偽表による値の定義により矛盾する。以上により，証明可能な定理はみな恒真である。QED

5.9 補助定理

\(\mathfrak{A} \) は論理式とし，\(\mathfrak{A} \) に現れる命題変数を \(A_1, \ldots , A_n \) とする。ひとつの付値が与えられたとき，\(\mathfrak{A}' \) を次のように定める：\(A_i \) の値が1ならば，\(A_i \) を \(\mathfrak{A}_i' \) とする；\(A_i \) の値が0ならば，\(\neg A_i \) を \(\mathfrak{A}_i' \) とする。また，この同じ付値について，論理式 \(\mathfrak{A}' \) を次のように定める：\(\mathfrak{A} \) の値が1ならば，\(\mathfrak{A} \) を \(\mathfrak{A} \) とする；\(\mathfrak{A} \) の値が0ならば，\(\neg \mathfrak{A} \) を \(\mathfrak{A} \) とする。

このとき，

\[\mathfrak{A}_1', \ldots , \mathfrak{A}_n' \vdash \mathfrak{A}' \]

である。
証明：省略記号は元にもどし、命題はすべて論理記号としては→,-のみ用いて表現することにし、命題のなかに現れる論理記号の数mについての帰納法で証明する。

$m = 0$ のとき。\mathfrak{A} はひとつの命題変数 A である。A の値が 0 か 1 かにしたがって、$\neg A \vdash A, A \vdash A$ を主張するのであるから、これはムツン正しい。

$m \geq 1$ のとき。\mathfrak{A} のいちばん外側の論理記号で分類する。

1）\mathfrak{A} が $\neg \mathfrak{B}$ のとき。

1. 1）\mathfrak{B} の値が 1 のとき。このとき \mathfrak{A} の値は 0 であり、\mathfrak{B}' は \mathfrak{B} であり、\mathfrak{A}' は \mathfrak{A} である。帰納法の仮定より $A_1', \ldots, A_n', \vdash \mathfrak{B}$ である。したがって、5.5．（三重否定の法則）とMPにより、$A_1', \ldots, A_n', \vdash \neg \mathfrak{B}$ であり、→\mathfrak{B} は→\mathfrak{A} であった。

1. 2）\mathfrak{B} の値が 0 のとき。このとき \mathfrak{B}' は→\mathfrak{B} であり、\mathfrak{A}' は \mathfrak{A} である。

帰納法の仮定により、$A_1', \ldots, A_n', \vdash \neg \mathfrak{B}$ であり、→\mathfrak{B} は→\mathfrak{A} である。

2）\mathfrak{A} が $\mathfrak{B} \rightarrow \mathfrak{C}$ のとき。このとき、$\mathfrak{B}, \mathfrak{C}$ に現れる論理記号の数は m より少ないので帰納法の仮定により

$$A_1', \ldots, A_n', \vdash \mathfrak{B}', \quad A_1', \ldots, A_n', \vdash \mathfrak{C}'$$

である。

2. 1）\mathfrak{B} の値が 0 のとき。このとき、\mathfrak{A} の値は 1 であり、\mathfrak{B}' は→\mathfrak{B} であり、\mathfrak{A}' は \mathfrak{A} である。帰納法より $A_1', \ldots, \vdash \neg \mathfrak{B}$ である。5.5．（4）を用いて、$A_1', \ldots, \vdash (\mathfrak{B} \rightarrow \mathfrak{C})$ である。$\mathfrak{B} \rightarrow \mathfrak{C}$ は→\mathfrak{A} であった。

2. 2）\mathfrak{C} の値が 1 のとき。このとき \mathfrak{A} の値は 1 であり、\mathfrak{C}' は→\mathfrak{C} であり、\mathfrak{A}' は \mathfrak{A} である。帰納法より $A_1', \ldots, \vdash \mathfrak{B}$ である。公理 A1 により $A_1', \ldots, \vdash (\mathfrak{B} \rightarrow \mathfrak{C})$ と云ってよい。$\mathfrak{B} \rightarrow \mathfrak{C}$ は→\mathfrak{A} であった。

2. 3）\mathfrak{B} の値が 1 であるのに\mathfrak{C} の値が 0 のとき。このとき \mathfrak{A} の値は 0 であり、\mathfrak{B}' は→\mathfrak{B} であり、\mathfrak{C}' は→\mathfrak{C} であり、\mathfrak{A}' は→\mathfrak{A} である。帰納法により $A_1', \ldots, \vdash \mathfrak{B}, A_1', \ldots, \vdash \neg \mathfrak{C}$ であるから、5.5．（6）より $A_1', \ldots, \vdash \neg (\mathfrak{B} \rightarrow \mathfrak{C})$ であるが、→$\neg (\mathfrak{B} \rightarrow \mathfrak{C})$ は→\mathfrak{A} であった。QED

5.10 完全性定理 completeness theorem

論理式 \mathfrak{A} が一真ならば、\mathfrak{A} は証明可能である。

証明：\mathfrak{A} は一真とする。\mathfrak{A} に現れる命題変数を A_1, \ldots, A_n とする。任意の付値をたいていて、\mathfrak{A} が一真であると仮定して、

$$A_1', \ldots, A_n', \vdash \mathfrak{A}$$

がなりたつ。したがって A_n の値が 1 の付値を考えると、

$$A_1', \ldots, A_{n-1}, A_n, \vdash \mathfrak{A}$$
がわかり、\(A_n \) の値が 0 の付値を考えると，
\[
\mathfrak{A}_1, \ldots, \mathfrak{A}_{n-1}, \neg A_n \vdash \mathfrak{A}
\]
がわかる。したがって、\(A_1, \ldots, A_{n-1} \) の値がどうであっても，
\[
\mathfrak{A}_1', \ldots, \mathfrak{A}_{n-1}' \vdash (A_n \rightarrow \mathfrak{A})
\]
と
\[
\mathfrak{A}_1', \ldots, \mathfrak{A}_{n-1}' \vdash (\neg A_n \rightarrow \mathfrak{A})
\]
との双方がなりたつ。ゆえに 5.5(7) を用いて
\[
\mathfrak{A}_1', \ldots, \mathfrak{A}_{n-1}' \vdash \mathfrak{A}
\]
が出る。これをくりかえして
\[
\vdash \mathfrak{A}
\]
が出る。QED

5.11 無矛盾性
形式的体系 \(\text{Hp} \) は否定 \(\neg \) について無矛盾である。
証明：\(\mathfrak{A} \) は論理式として，\(\mathfrak{A} \) と \(\neg \mathfrak{A} \) とがともに証明可能であったとする。すると，5.8 により \(\mathfrak{A} \) と \(\neg \mathfrak{A} \) とはともに恒真である。これは不可能である。
QED

5.12 注意
いっぱいに \(S \) が形式的体系で，否定 \(\neg \) と合意 \(\rightarrow \) をもち，仮言推理が許され，しかも 5.5(4)
\[
\neg \mathfrak{A} \rightarrow (\mathfrak{A} \rightarrow \mathfrak{B})
\]
が証明可能であるとする。このとき，\(S \) が無矛盾であれば，\(S \) には証明可能でない表現がなければならない。じっさい少なくともひとつは証明可能である表現があれば，その否定は，無矛盾性により，証明可能ではありえない。逆に，\(S \) が非無矛盾であると，\(\mathfrak{A} \) と \(\neg \mathfrak{A} \) とが証明可能であるような表現 \(\mathfrak{A} \) があり，これについて，
\[
\neg \mathfrak{A} \rightarrow (\mathfrak{A} \rightarrow \mathfrak{B})
\]
にたいして仮言推理を 2 回用いると，任意の表現 \(\mathfrak{B} \) が証明可能になる。だから，証明可能でない表現がひとつでもあって，その意味でその体系がつまるしない trivial ものでないなら，その体系は無矛盾である。
6 様相論理の形式化

この章では様相論理 modal logic の形式化を試みる。様相論理では様相記号 modality symbol とよぶ新しい記号□が導入される。このときに，□(A → B) を A → S B と略記して，厳密含意 strict implication とよぶことがある。また，¬□A を ◇A と略記する。直感的にも，□A は「A が必然的になりたつ」を意味し，◇A は「A であることはありうる，可能である」を意味する。

6.1 様相論理の命題計算の構築

古典論理の命題計算 LK を土台にして，様相論理の命題計算を構築しよう。

- 記号は，LK の記号に論理記号□をつけくわえる。
- 論理式の定義に次をつけてくわえる：A が論理式ならば，□(A) は論理式である。
- 公理はあとでいくつか設定する。
- 推論規則は LK の規則に次のものをつけくわえる：

\[
\begin{array}{l}
\Gamma \Rightarrow A \\
\Box \Gamma \Rightarrow \Box A
\end{array}
\]

ここで，\(\Gamma\) は論理式の有限列 \(C_1, \ldots, C_\mu\) で，A は論理式を表し，\(\Box\) は列 \(\Box C_1, \ldots, \Box C_\mu\) を表す。

公理として LK の公理のみを採用した計算を K と命名する。以下，K を考える。

なお，A が論理式のとき，¬□A を ◇A と略記する。

6.2

(1) \((\Box A) \land (\Box B) \Leftrightarrow \Box (A \land B)\)

証明：\(\land\) で (A, B) ⇒ A \land B だから，推論規則 (\() で (\Box A, \Box B) ⇒ \Box (A \land B)\) である。逆に，\(\land\) で A \land B ⇒ A, A \land B ⇒ B だから，推論規則 (\) により，\(\Box (A \land B) ⇒ \Box A, \Box (A \land B) ⇒ \Box B\) であるので，\(\land\) により \(\Box (A \land B) ⇒ (\Box A) \land (\Box B)\)。
QED

(2) \((\Box A) \lor (\Box B) ⇒ \Box (A \lor B)\)

証明：A ⇒ A \lor B, B ⇒ A \lor B ことより，推論規則により，□A ⇒ □(A \lor B), □B ⇒ □(A \lor B) である。\(\lor\) とくにより (□A) \lor (□B) ⇒ □(A \lor B) である。QED

21
（3） □(A → B) ⇒ (□A → □B)
証明：→とりにより(A → B, A) ⇒ Bであるから，推論規則(□)により，
(□(A → B), □A) ⇒ □Bである。→いれにより，□(A → B) ⇒ (□A → □B).
QED

6.3 いろいろの公理

公理として次のようなもののいくつかを採用する：

D： □A → ◇A
T： □A → A
4： □A → □□A
B： A → □◇A
5： ◇A → □◇A

げんみつにいうと，これらは公理ではなく，公理型である。すなわち，た
とえば，T を採用するということは，

Γ ⇒ (□A → A)

あるいは，

C ⇒ (□A → A)

を公理として採用するという意味である。

公理型として T と 5 を採用した計算は様相論理 KT5 とよばれ，しば
しば S5 とよばれる。同様に KT4 は S4 とよばれる。

6.4 Hilbert 流の体系の構築

第5章で古典命題論理の体系 Hp を構築したが，同様な様相論理の体系は，
古典命題論理の公理のほかに公理として

□(□A → □B) → (□A → □B)

をつくくわえ，推論規則として仮言推理性のほかに，必然化の規則 rule of ne-
cessitation:

「□A から □□A が直接導かれる」

をつけくわえれば構築できる。
7 様相論理 S5 の意味論

7.1 記号と表現
記号は命題定数 γ, α, 命題変数 p_0, p_1, p_2, \cdots, 論理記号 $\neg, \wedge, \vee, \rightarrow, \Box$, および補助記号の括弧 () である。
命題は次のもののもみである: 命題定数, 命題変数は命題であり, A, B が
命題のとき, $\neg (A), (A) \wedge (B), (A) \vee (B), (A) \rightarrow (B), \Box (A)$ は命題である。

次の省略記号を用いる:
$A \leftrightarrow B := (A \rightarrow B) \wedge (B \rightarrow A)$
$\Diamond A := \neg \Box \neg A$

7.2 モデルのなかでの真
モデル model というのは, 集合 W と命題変数全体の集合 L_0 から $\{0, 1\}$ への写
像 V との組 (W, V) である. W の要素は可能世界 possible world とよばれる。
A が命題であり, $M = (W, V)$ がモデルで, $w \in W$ のとき, $V(A, w) \in \{0, 1\}$
を以下のように帰納的に定義する:

$V(\gamma, w) = 1$
$V(\alpha, w) = 0$
$V(\neg A, w) = 1$ は $V(A, w) = 0$ であることがあるので;
$V(A \wedge B, w) = 1$ は $V(A, w) = 1$ かつ $V(B, w) = 1$ であることである;
$V(A \vee B, w) = 1$ は $V(A, w) = 1$ かつ $V(B, w) = 1$ の少なくとも一方が
なりたつことがあるので;
$V(A \rightarrow B, w) = 1$ は $V(A, w) = 1$ なら $V(B, w) = 1$ であることである;
$V(\Box A, w) = 1$ は任意の $u \in W$ にとって $V(A, u) = 1$ であることである。

だから, $V(\Box A, w)$ は w のとりかたによらないので, $V(\Box A)$ と略記しても
よい. あきらかに, $V(\Diamond A, w) = 1$ ということは少なくともひとつの $u \in W$
にたいして $V(A, u) = 1$ であることである. これも $V(\Diamond A)$ と略記してよい。

さらに, どんなモデル $M = (W, V)$, どの $w \in W$ にたとえも $V(A, w) = 1$
であることを, 「命題 A は恒真 valid である」といい, は

$\models A$

と記すこととする。
7.3 T
どんな命題 A にたいしても

\[T \quad \square A \rightarrow A \]
は恒真である。
証明：任意のモデル \(M = (W, V) \) と \(w \in W \) にたいして \(V(\square A \rightarrow A, w) = 1 \) を主張している。それで、\(V(\square A, w) = 1 \) ということは、すべての \(u \in W \) について \(V(A, u) = 1 \) ということだから、とくに \(u \) として \(w \) をとると、\(V(A, w) = 1 \) である。ゆえに主張がなりたつ。QED

7.4 5
どんな命題 A にたいしても

\[5 \quad \lozenge A \rightarrow \square \lozenge A \]
は恒真である。
証明：任意のモデル \(M = (W, V) \) と任意の \(w \in W \) にたいして \(V(\lozenge A \rightarrow \square \lozenge A, w) = 1 \) を主張している。いま、\(V(\lozenge A, w) = 1 \) ということはある \(u \in W \) があって \(V(A, u) = 1 \) であるということである。一方 \(V(\square \lozenge A, w) = 1 \) ということはすべての \(w' \in W \) について \(V(\lozenge A, w') = 1 \) であるということであるが、これは \(w' \) によらず、ある \(u \in W \) について \(V(A, u) = 1 \) であるということである。これは前提で証明されている。QED

7.5 K
T や 5 は様相論理として考えられているいろいろな体系においていつも恒真であるわけではない。ここで考えているのは、もっとも 採われることの多い体系 S5 である。だが、次のことは、広くいつも仮定される：すべての命題 A, B について

\[K \quad \square (A \rightarrow B) \rightarrow (\square A \rightarrow \square B) \]
は恒真である。
証明：\(\square A \rightarrow \square B \) を \(C \) としよう。\(V(\square A \rightarrow B, w) = 1 \) とすると、これは \(w \) によらず、すべての \(u \in W \) にたいして \(V(A \rightarrow B, u) = 1 \) ということであり、\(V(A, u) = 1 \) なら \(V(B, u) = 1 \) であるということである。証明すべきは \(V(C, w) = 1 \) であることであり、それは \(V(\square A) = 1 \) ならば \(V(\square B) = 1 \) であるということである。すなわち、\(V(A, w') = 1 \) がすべての \(w' \in W \) にたいしてなりたつならば \(V(B, w'') = 1 \) がすべての \(w'' \in W \) にたいしてなりたつということである。これは前提で証明されている。QED
7.6 modus ponens
仮言推理 modus ponens とよばれる次の推論規則がなりたつ:
もし $\vdash (A \rightarrow B)$ であれば $\vdash A$ であるならば $\vdash B$ である。

証明：$\vdash (A \rightarrow B)$ はどんなモデル $M = (W, V)$ とどの $w \in W$ においても $V(A \rightarrow B, w) = 1$ がなりたつことを意味し，$\vdash A$ なら $V(A, w) = 1$ であるから，定義により $V(B, w) = 1$ である。QED

7.7 必然化の規則
必然化の規則 rule of necessitation とよばれる次の推論規則がなりたつ:
もし $\vdash A$ ならば，$\vdash \Box A$ である。

証明：$\vdash A$ というのは，どんなモデル $M = (W, V)$ とどの $w \in W$ にたいしても $V(A, w) = 1$ であるということから，$V(\Box A) = 1$ であり，したがって $\vdash \Box A$ である。QED。

この規則と，次の命題を混同してはならない:

$A \rightarrow \Box A$

この命題は恒真とはかぎらない。じっさい，$W = \{0, 1\}$ とし，$v(A, 0) = 1, V(A, 1) = 0, V(B, 0) = 1, V(B, 1) = 0$ しよう。すると，$V(A, 0) = 1$ があるが，$V(A, 1) = 0$ だから，$V(\Box A) = 0$ である。

7.8

$(\Box A) \lor (\Box B) \rightarrow \Box (A \lor B)$
は恒真であるが，

$\Box (A \lor B) \rightarrow (\Box A) \lor (\Box B)$
は恒真とはかぎらない。

後者の反例は，たとえば，$W = \{0, 1\}$ とし，$V(A, 0) = 1, V(A, 1) = 0, V(B, 0) = 0, V(B, 1) = 1$ を考えればよい。

また，命題

$\Diamond (A \rightarrow B) \rightarrow (\Diamond A \rightarrow \Diamond B)$
は恒真でないことがある。

たとえば，$W = \{0, 1\}, V(A, 0) = 1, V(A, 1) = 0, V(B, 0) = V(B, 1) = 0$ のとき考えればよい。

8 様相論理 S5 の証明論
様相論理 S5 では，次の公理を採用する：
\(T \qquad \Box A \rightarrow A \)
\(5 \quad \Diamond A \rightarrow \Box \Diamond A \)
\(K \quad \Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B) \)

むろん，古典論理は前提されているので，仮言推理 modus ponens

\[(MP)\]
\[
\frac{A \rightarrow B, A}{B}
\]

は許されるが，さらに推論規則として

\[(RN)\]
\[
\frac{A}{\Box A}
\]

も仮定する。

もう少しくわしく解説すると，こういうことである。いま命題 \(A \) について，\(A \) が証明可能のとき，\(A \) は定理であるといい，\(\vdash A \) と記すことにする。

そうすると，たとえば，\(T \) を公理として採用するということは，任意の命題 \(A \) にたいして\(\vdash (\Box A \rightarrow A) \) とするということである。また，\((RN) \) は\(\vdash A \) ならば\(\vdash \Box A \) を導けるとしているのであり，\(\vdash (A \rightarrow \Box A) \) と主張しているわけではない。

8.1 T\(\Diamond \)

任意の命題 \(A \) にたいして

\(T\Diamond \quad A \rightarrow \Diamond A \)

は定理である。

証明：\(T \) により \(\Box \neg A \rightarrow \neg A \) であるから，対偶をとって \(A \rightarrow \neg \Box \neg A \) である。\(\neg \Box \neg A \) は \(\Diamond A \) に他ならない。QED

8.2 D

任意の命題 \(A \) にたいして

\(D \quad \Box A \rightarrow \Diamond A \)

は定理である。

証明：\(T \) により \(\Box A \rightarrow A \) であり，\(T\Diamond \) により \(A \rightarrow \Diamond A \) だから。QED

8.3 B

任意の命題 \(A \) にたいして
\[B \quad A \rightarrow \square \Diamond A \]
は定理である。
証明：\(T \Diamond \) から \(A \rightarrow \Diamond A \) であり，5 から \(\Diamond A \rightarrow \square \Diamond A \) であるから。QED

8.4
次の推論規則となりたつ：

\[
\begin{array}{c}
A \rightarrow B \\
\square A \rightarrow \square B
\end{array}
\]

\((RM) \)
証明：\(\top (A \rightarrow B) \) ならば，\((RN) \) により \(\top \square (A \rightarrow B) \) であるから，\(K \) と
\((MP) \) を用いればよい。QED

8.5 Df\(\square \)
任意の命題 \(A \) について

\[Df\square \quad \square A \leftrightarrow \neg \neg \neg A \]
は定理である。
証明：\(\neg \neg \neg A \) は \(\neg \neg \neg \neg \neg \neg \neg A \) に他ならず，\(\neg \neg C \leftrightarrow C \) である。QED

8.6 B\(\Diamond \)
任意の命題 \(A \) について

\[B\Diamond \quad \Diamond \square A \rightarrow A \]
は定理である。
証明：\(\Diamond \square A \) とは \(\neg \neg \neg \neg \square A \) を略記したものである。しかし，\(B \) から対偶を
とると，\(\neg \square \neg A \rightarrow \neg \neg A \rightarrow A \) であるが，\(\neg \square \neg A \) は \(\neg \neg \neg \neg \neg \neg \neg \neg A \) のことで
あり，\(\leftrightarrow \neg \neg \neg \neg \neg \neg \neg A \) である。QED

8.7 5\(\Diamond \)
任意の命題 \(A \) について

\[5\Diamond \quad \Diamond \square A \rightarrow \square A \]
は定理である。
証明：5 より \(\neg A \rightarrow \square \neg \neg A \) であるから，\(\neg A \rightarrow \neg \neg \neg A \) である。しか
し，\(Df\square \) により，\(\neg \square \neg A \leftrightarrow \neg \neg \neg \square \neg A \leftrightarrow \neg \neg \neg \square A \leftrightarrow \square \square A \) であり，
\(\neg \neg A \leftrightarrow \square A \) である。QED
8.8 4
任意の命題 A にたいして

4 □A → □□A

は定理である。

証明：5◇と (RM) より □◇□A → □□A である。一方、B より □A → □◇□A であるから、(MP) を用いればよい。QED

8.9 4◇

¬A にたいする 4 の対偶をとると、任意の命題 A にたいして

4◇ ◇◇A → □A

が定理であることがわかる。

8.10 健全性

第 7 章の議論により、S5 が健全であることはあきらかであろう。すなわち、定理はみな第 7 章の意味で恒真である。いかえると、⊥ A ならば ⊨ A である。人が証明される心配はない。

このことに注意すれば、推論規則 (RM) を命題 C:

\[(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)\]

と混同してはならず、後者は証明できない。なぜならば、これは恒真でない。

\[W = \{0, 1\} とし、V(A, 0) = V(A, 1) = 1, V(B, 0) = 0, V(B, 1) = 1 とすると、V(A \rightarrow B, 1) = 1 であり、V(\Box A) = 1 であるが、V(B, 0) = 0 であるから、V(\Box B) = 0 である。したがって、V(C, 1) = 0 である。

9 逆説論理 LP

G. Priest が次の論文で 1979 年に定式化した逆説論理 logic of paradox の体系

LP を解説する：

これは、Lulasiewicz や Kleene の与えた 3 値論理と本質的に同じものである。
9.1 命題と表現

・記号は、命題変数p_0, p_1, \cdots、論理記号\neg, \land、および補助記号の括弧(,)である。
・命題は次のように定義されるものののみである：命題変数は命題である；
A, Bが命題のとき、$\neg(A), (A) \land (B)$は命題である。
・以下の省略記号を用いる：
$A \lor B := \neg(\neg A \land \neg B)$
$A \rightarrow B := (\neg A) \lor B$
$A \leftrightarrow B := (A \rightarrow B) \land (B \rightarrow A)$

9.2 付値

命題変数の全体のなす集合L_0から$\{0, 1/2, 1\}$への写像vを付値valuationとよぶ。これを次の真理表で命題全体の集合Lのうえへ拡張する。拡張した写像も同じ記号vで表すものとする。

<table>
<thead>
<tr>
<th>\neg</th>
<th>0</th>
<th>1</th>
<th>1/2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

すると省略記号の定義から次の真理表が得られる：

<table>
<thead>
<tr>
<th>\lor</th>
<th>1</th>
<th>1/2</th>
<th>0</th>
<th>\rightarrow</th>
<th>1</th>
<th>1/2</th>
<th>0</th>
<th>\leftrightarrow</th>
<th>1</th>
<th>1/2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
</tr>
</tbody>
</table>

9.3 \modelsの定義

Γが命題の集合であり、Aは命題とする。"どんな$C \in \Gamma$にたいしても$v(C) > 0$となる付値vにたいしては$v(A) > 0$である"ということを

$\Gamma \models A$

と記す。とくにΓが空集合のとき

$\models A$

と記す。これは"どんな付値vにたいしても$v(A) > 0$である"ということを意味する。
9.4

真理表を用いると，任意の命題 A に対しして

$$\models \neg (A \land \neg A)$$

であることが容易に確かめられる。しかし，これには，どんな付値 v に対しても $v(\neg (A \land \neg A)) > 0$ であるということであるから，$v(\neg (A \land \neg A)) \leq 1/2$ であることを示しているだけである，$v(A \land \neg A) = 0$ とは限らない。じっ

さいもし $v(A) = 1/2$ ならば，$v(\neg (A \land \neg A)) = 1/2$ である。

9.5 なりたつこと

A, B, C が任意の命題のとき，次のことがなりたつ：

$$
A \models A \lor B \quad \{A, B\} \models A \land B \\
A \rightarrow B \models (\neg B) \rightarrow (\neg A) \quad A \rightarrow (B \rightarrow C) \models B \rightarrow (A \rightarrow C) \\
A \models B \rightarrow A \quad \{\neg A, \neg B\} \models \neg (A \lor B) \\
(\neg A) \rightarrow (\neg B) \models B \rightarrow A \quad \neg (A \lor B) \models \neg A \\
A \models \neg \neg A \quad \neg \neg A \models A \\
\neg A \models \neg (A \land B) \quad \neg (A \rightarrow B) \models A \\
A \land B \models A \quad \{A, \neg B\} \models \neg (A \rightarrow B) \\
A \rightarrow B \models (A \land C) \rightarrow (B \land C) \quad \neg A \models A \rightarrow B \\
A \rightarrow (A \rightarrow B) \models A \rightarrow B \quad A \rightarrow (\neg A) \models \neg A
$$

9.6 なりたたないこと

次の演繹はいっぱんにならたない：

(1) $A \land (\neg A) \not\models B$
(2) $\{A \rightarrow B, B \rightarrow C\} \not\models A \rightarrow C$
(3) $\{A, A \rightarrow B\} \not\models B$
(4) $\{A \rightarrow B, \neg B\} \models \neg A$
(5) $A \rightarrow B \land (\neg B) \not\models \neg A$

(1) の反例：いま $v(A) = 1/2, v(B) = 0$ とする。$v(\neg A) = 1/2$ だから，$v(A \land \neg A) = 1/2$ である。しかし，$v(B) = 0$ である。

(2) の反例：いま $v(A) = 1, v(B) = 1/2, v(C) = 0$ とする。すると $v(A \rightarrow B) = 1/2, v(B \rightarrow C) = 1/2$ であるが，$v(A \rightarrow C) = 0$ である。
(3) の反例：いま $v(A) = 1/2, v(B) = 0$ とする。$v(A) = 1/2, v(A \rightarrow B) = 1/2$ だが、$v(B) = 0$ である。
(4) の反例：いま $v(A) = 1, v(B) = 1/2$ とする。すると、$v(A \rightarrow B) = 1/2, v(\neg B) = 1/2$ だが、$v(\neg A) = 0$ である。
(5) の反例：いま $v(A) = 1, v(B) = 1/2$ とする。すると、$v(B \land \neg B)) = 1/2, v(A) = 1$ だから $v(A \rightarrow (B \land \neg B))) = 1/2$ である。しかし、$v(\neg A) = 0$ である。

(1) がいっぱいにはなりたくなかったから，この論理は爆発の原理を免れており，その意味で paraconsistent である。ただし，任意の命題 A, B について，

$$\vdash A \land \neg A \rightarrow B$$

であるから，その意味では爆発している。